
1 Mouse and Keyboard

Chapter 5

Mouse and Keyboard

One of the most striking things about our example program, WiniEdit, is that it
never has to deal directly with the user’s mouse clicks and keystrokes. This is
because it relies on the system’s default window procedure, DefWindowProc, and
the predefined window class EDIT to provide standard responses to the user’s input
actions: moving and manipulating windows on the screen, choosing menu items,
selecting and typing text in the window’s edit control, and so on. In the real world,
of course, application programs have to be able to provide new functionality beyond
what’s already built into the system. This means intercepting the user’s input
actions and responding to them in the program’s own way, according to the needs
of its particular application. In this chapter, we’ll learn how to receive and respond
to input from the mouse and keyboard.

Like so many other things in the IBM/DOS world, the mouse has never been
standardized. While Macintosh programmers could always count on a standard,
stable one-button mouse, their DOS colleagues have had to deal with a proliferation
of possibilities. The most common configuration is the two-button Microsoft mouse,
but there are also systems in use with a one-button mouse, a three-button mouse,
or no mouse at all. The Windows system is designed to support all of these
possibilities, and Windows programs have to be prepared to accommodate any of
them.

One thing this means in practical terms is always to provide a keyboard-based
alternative to anything the user can do with the mouse. We’ll see later how
Windows supports this idea with alternative keyboard interfaces to such things as
menus, controls, and scroll bars. In planning your own user interface, you should
also give some thought to how your mouseless users can access your program’s
features from the keyboard alone.

Another factor to consider is how you’ll deal with varying numbers of buttons on the
mouse. By convention, the button on a one-button mouse is considered to be the
left; those on a two-button mouse, the left and right. So one approach to button
uncertainty is simply to ignore the right and middle buttons and provide a one-
button interface based solely on the left button. This is certainly the easiest strategy
for porting an existing Macintosh program to Windows. A variation on the same idea
would be to treat all three buttons interchangeably, by intercepting all messages

Mouse and Keyboard 1

2 Mouse and Keyboard
referring to the right and middle buttons and reposting them with SendMessage or
PostMessage as equivalent left-button messages.

A more elaborate approach would be to use the right and middle buttons for
convenience features that can also be accessed in other ways. For instance, many
Windows programs use the right mouse button to pop up a context-sensitive
floating menu offering the most common or useful operations for a particular area of
the screen. As long as all of the same commands are also available via the menu
bar in the usual way, this “context menu” is simply a handy extra that you can offer
to those users equipped to take advantage of it, without seriously penalizing those
who aren’t. Similarly, you might use the middle button as an alternative to Shift-
click for extending an existing selection: again, nothing significant is lost, since
users without a middle button can still perform the operation in another way. (Most
Windows programs simply ignore the middle button entirely.)

If you design your programs this way, you don’t normally need to know whether
there’s a mouse installed or how many buttons it has: you simply write your window
procedure to handle clicks from the various mouse buttons in case you receive any.
If you do need to find out what kind of mouse is available on the user’s machine,
you can use the Windows function GetSystemMetrics. This is a general-purpose
function that can provide a whole range of information on the current system
configuration—including, but not limited to, the mouse characteristics. The function
takes a single parameter, an integer selector that identifies the particular item of
information you want. All of the selectors are defined as interface constants
beginning with the prefix SM_, for “system metrics.” The call

hasMouse = GetSystemMetrics(SM_MOUSEPRESENT);
will return a boolean result telling whether the system has a mouse, and

nButtons = GetSystemMetrics(SM_CMOUSEBUTTONS);
will tell you how many buttons it has (or 0 if there is no mouse).

As a convenience to left-handed users, those with a two- or three-button mouse can
use the Mouse control panel to swap the functions of the left and right buttons.
There’s a Windows function, SwapMouseButton, for doing this, but you shouldn’t
normally call it yourself, since it affects the global behavior of the system for all
programs, not just your own. It’s best simply to honor whatever preference the user
has set through the control panel. If necessary, though, you can call
GetSystemMetrics with the selector SM_SWAPBUTTON

isSwapped = GetSystemMetrics(SM_SWAPBUTTON);
to find out whether the buttons are currently swapped. Another property the user
can set with the control panel is the mouse’s tracking speed, which you can find out
by calling the Windows function SystemParametersInfo with the selector
SPI_GETMOUSE. The selector SPI_SETMOUSE lets you change the mouse speed, but
again this is not something you should normally be doing from within an application
program.

Mouse and Keyboard 2

3 Mouse and Keyboard

Mouse Messages
When the user moves the mouse or presses or releases one of its buttons, Windows
reports this event to your program by sending one of the messages listed in Table
5–1. The message is normally sent to the window that contains the mouse at the
time of the event. (There’s an exception to this rule, which we’ll learn about shortly.)
So the first thing Windows has to do is figure out which window the mouse is in. It
then sends the window a message of type WN_NCHITTEST to narrow down the
specific part of the window where the event occurred (in the title bar, menu bar,
sizing border, client area, or whatever). The correct handling of this very important
message is critical to the proper functioning of the entire Windows user interface.
It’s essential for your program to pass it through to the default window procedure,
DefWindowProc, for processing.

Table 5–1. Mouse messages
Message type Meaning

WM_NCHITTEST Test mouse’s location on screen

WM_LBUTTONDOWN Left mouse button pressed in client area
WM_LBUTTONUP Left mouse button released in client area
WM_LBUTTONDBLCLK Left mouse button double-clicked in client area

WM_MBUTTONDOWN Middle mouse button pressed in client area
WM_MBUTTONUP Middle mouse button released in client area
WM_MBUTTONDBLCLK Middle mouse button double-clicked in client area

WM_RBUTTONDOWN Right mouse button pressed in client area
WM_RBUTTONUP Right mouse button released in client area
WM_RBUTTONDBLCLK Right mouse button double-clicked in client area

WM_NCLBUTTONDOWN Left mouse button pressed in nonclient area
WM_NCLBUTTONUP Left mouse button released in nonclient area
WM_NCLBUTTONDBLC
LK

Left mouse button double-clicked in nonclient area

WM_NCMBUTTONDOWN Middle mouse button pressed in nonclient area
WM_NCMBUTTONUP Middle mouse button released in nonclient area
WM_NCMBUTTONDBLC
LK

Middle mouse button double-clicked in nonclient area

WM_NCRBUTTONDOWN Right mouse button pressed in nonclient area
WM_NCRBUTTONUP Right mouse button released in nonclient area
WM_NCRBUTTONDBLC
LK

Right mouse button double-clicked in nonclient area

Mouse and Keyboard 3

4 Mouse and Keyboard
WM_MOUSEMOVE Mouse position changed within client area
WM_NCMOUSEMOVE Mouse position changed within nonclient area

The lParam parameter to WM_NCHITTEST contains the current mouse position in
screen-relative coordinates (that is, relative to an origin at the top-left corner of the

Mouse and Keyboard 4

5 Mouse and Keyboard
screen). The default window procedure responds to this message by testing this
location against the various regions of the window and returning one of the result
codes shown in Table 5–2. Most of the possible results refer to parts of the window’s
nonclient area, such as the title bar or sizing border. On receiving one of these
results, Windows sends the window an appropriate nonclient-area mouse message,
such as WM_NCLBUTTONDOWN or WM_NCMOUSEMOVE, with the hit-test result and the
screen-relative mouse coordinates as parameters. These messages are really
intended to be handled by the Windows system itself, and most programs simply
pass them to the default window procedure instead of processing them explicitly.

Table 5–2. Hit-test results
Name Meaning

HTCAPTION Title bar
HTREDUCE Minimize box
HTZOOM Maximize/restore box

HTMENU Menu or menu bar
HTSYSMENU System menu
HTBORDER Nonsizing border

HTTOP Sizing border, top edge
HTBOTTOM Sizing border, bottom edge
HTLEFT Sizing border, left edge
HTRIGHT Sizing border, right edge
HTTOPLEFT Sizing border, top-left corner
HTTOPRIGHT Sizing border, top-right corner
HTBOTTOMLEFT Sizing border, bottom-left corner
HTBOTTOMRIGHT Sizing border, bottom-right corner

HTVSCROLL Vertical scroll bar
HTHSCROLL Horizontal scroll bar

HTSIZE Size box
HTGROWBOX Size box

HTCLIENT Client area

HTTRANSPARENT Window covered by another window

HTERROR Screen background; beep
HTNOWHERE Screen background; no beep

If the hit-test message returns a result of HTCLIENT, Windows generates a client-
area mouse message, such as WM_LBUTTONDOWN or WM_MOUSEMOVE, instead of a
nonclient-area message. In this case, before passing the mouse coordinates as a
message parameter, it converts them to client-relative form, in which the origin of

Mouse and Keyboard 5

6 Mouse and Keyboard
the coordinate system is the top-left corner of the window’s client area instead of
the full screen. The other parameter, wParam, is a flag word giving the state of all
the mouse buttons and the keyboard modifier keys at the time of the click or move;
it is thus analogous to the modifiers field of a Macintosh event record. The
constants listed in Table 5–3 are bit masks for extracting the individual flags from
this parameter.

Table 5–3. Mouse-key modifiers
Name Meaning

MK_SHIFT Shift key down
MK_CONTROL Control key down

MK_LBUTTON Left mouse button down
MK_MBUTTON Middle mouse button down
MK_RBUTTON Right mouse button down

Mouse Movements
On the Macintosh, mere movements of the mouse don’t generate events in
themselves. There is a mouse-moved event, but it’s used strictly for cursor
management: you get one only when the mouse moves outside a region that you’ve
specified as valid for the current cursor shape. In Windows, you receive a mouse-
moved message (WM_MOUSEMOVE or WM_NCMOUSEMOVE) every time the user moves the
mouse. You can use this message to track the mouse when the user drags it while
holding down one of the buttons.

Listing 5–1 shows an example in which the mouse is used to draw out a rectangle
between two diagonally opposite corners within a window’s client area. The tracking
operation begins when we receive a WM_LBUTTONDOWN message reporting that the
left mouse button was pressed inside the client area. We retrieve the window’s
client rectangle with the Windows function GetClientRect, call another Windows
function, ClipCursor, to confine the mouse’s movements within that rectangle, and
save the current mouse coordinates as the starting point of the rectangle to be
drawn. Then, each time we receive a WM_MOUSEMOVE message with the left button
still down, we extend the rectangle to the new ending point. If a tracking operation
is already in progress (indicated by the global program flag tracking), we first
erase the rectangle drawn by the previous WM_MOUSEMOVE message; then we save
the mouse coordinates as the new ending point, redraw the rectangle, and set the
tracking flag to force the rectangle to be erased on the next iteration. When the
user finally releases the button, we will receive a WM_LBUTTONUP message: we call
ClipCursor again with a NULL parameter to cancel the confinement of the mouse,
then clear the tracking flag to end the tracking operation. The next time the left
button is pressed, a new tracking operation will begin.

Mouse and Keyboard 6

7 Mouse and Keyboard
Listing 5–1. Tracking the mouse

BOOL tracking = FALSE; // Currently tracking mouse?
POINT startPoint; // Starting point for tracking mouse
POINT endPoint; // Ending point for tracking mouse

LONG CALLBACK DoMessage (HWND thisWindow, UINT msgCode, WPARAM wParam, LPARAM lParam)

// Get and process one message.

{
LONG result = 0; // Function result

switch (msgCode) // Dispatch on message code
{

. . . ;

case WM_LBUTTONDOWN:
DoLButtonDown (thisWindow, wParam, lParam); // Handle WM_LBUTTONDOWN message
break;

case WM_MOUSEMOVE:
DoMouseMove (thisWindow, wParam, lParam); // Handle WM_MOUSEMOVE message
break;

case WM_LBUTTONUP:
DoLButtonUp (thisWindow, wParam, lParam); // Handle WM_LBUTTONUP message
break;

. . . ;

default:
result = DefWindowProc (thisWindow, msgCode, // Pass message to Windows

wParam, lParam); // for default processing
break;

} /* end switch (msgCode) */

return result;

} /* end DoMessage */

Mouse and Keyboard 7

8 Mouse and Keyboard
Listing 5–1. Tracking the mouse (continued)

VOID DoLButtonDown (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_LBUTTONDOWN message.

{
RECT clientRect; // Window’s client rectangle

GetClientRect (thisWindow, &clientRect); // Get client rectangle in client coordinates
/* Convert clientRect to screen-relative coordinates */

ClipCursor (&clientRect); // Confine mouse movements to client rectangle

startPoint.x = LOWORD(lParam); // Extract mouse coordinates
startPoint.y = HIWORD(lParam); // and save as starting point

} /* end DoLButtonDown */

VOID DoMouseMove (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_MOUSEMOVE message.

{
HDC windowContext; // Handle to device context for drawing in window

if (wParam & MK_LBUTTON); // Is left button down?
{

/* Get device context for drawing in window */;

if (tracking) // Have we already begun tracking?
/* Erase previous rectangle from startPoint to endPoint */;

endPoint.x = LOWORD(lParam); // Extract mouse coordinates
endPoint.y = HIWORD(lParam); // and save as ending point

/* Draw new rectangle from startPoint to endPoint */;

tracking = TRUE; // Indicate tracking in progress

/* Release device context */;

} /* end if (wParam & MK_LBUTTON) */

} /* end DoMouseMove */

Mouse and Keyboard 8

9 Mouse and Keyboard

Listing 5–1. Tracking the mouse (continued)

VOID DoLButtonUp (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_LBUTTONUP message.

{
ClipCursor (NULL); // Cancel mouse confinement

tracking = FALSE; // Indicate end of tracking sequence

} /* end DoLButtonUp */

Double Clicks
Windows considers a double mouse click to have occurred when the same mouse
button is pressed twice in succession within a limited distance on the screen and a
limited interval in time. The parameters defining these limits are set by the user
with the Mouse control panel. You can find out the time interval with the Windows
function GetDoubleClickTime, and the spatial limits by calling GetSystemMetrics
with the selectors SM_CXDOUBLECLK and SM_CYDOUBLECLK. You can also change these
values with the SystemParametersInfo function, using the selectors
SPI_SETDOUBLECLKWIDTH, SPI_SETDOUBLECLKHEIGHT, and SPI_SETDOUBLECLKTIME,
or with the function SetDoubleClickTime. However, as with the mouse speed and
button swap, it’s best not to disturb the user’s control panel settings.

Double clicks will not be reported to a window unless you have specified the
CS_DBLCLKS style option in the style field of the WNDCLASS parameter structure
when registering the window’s class. If you have, then the second click of a double-
click sequence will be reported with a double-click message in place of the usual
button-down message. Button-up messages are still reported normally. So, for
instance, a double click of the left button will generate the following sequence of
messages:

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDBLCLK
WM_LBUTTONUP

This method of reporting double clicks raises an interesting difficulty: there’s no way
to tell, when you receive the initial button-down message, whether it’s the start of a
double-click sequence or just an ordinary single click. Nor can you defer the decision
until you receive the ensuing double-click message, since it may never arrive. The
only reasonable way to handle the situation is to define the meaning of the first
click as a self-contained operation and the second click as an extension of the same
operation, in such a way that both can be processed independently when they
arrive. In a text-editing program, for instance, you can use the first click to position
the insertion caret between characters and the second to widen it into a full-word

Mouse and Keyboard 9

10 Mouse and Keyboard
selection. If the second click never arrives, the first will already have been
processed completely and correctly. (Luckily, WiniEdit doesn’t have to deal with this
issue, since all of its text selection is handled automatically by the system’s built-in
window procedure for edit controls.)

Capturing the Mouse
We mentioned earlier that there is an exception to the rule that mouse messages
are always reported to the window in which they occur. In some circumstances, it
may be appropriate for a window to capture the mouse, so that it will receive all
mouse clicks and movements, even if they take place outside the window’s borders.
The usual reason for this is to continue tracking the mouse while the user holds
down one of its buttons, even if it’s dragged outside the window with the button still
down. (Our example in Listing 5–1 addressed this issue in a different way, by
confining the mouse within the window’s client area with ClipCursor.) The
Windows function SetCapture directs all mouse messages to a specified window
until further notice; ReleaseCapture restores normal mouse reporting; GetCapture
returns a handle to the window that has captured the mouse, if any.

Capturing the mouse is always a temporary state of affairs, to be used only for a
limited time and a specific purpose. For instance, if you capture the mouse in order
to track it during a drag, be sure to release it on receiving the mouse-up message
ending the tracking operation: otherwise, no other window will be able to receive
mouse input and the user will be unable to activate another window by clicking in it.
A thread can capture the mouse only for one of its own windows, never for a window
belonging to another thread. The capturing window should always be the active
(frontmost) window on the screen. If it isn’t, the capture will not behave as
expected: mouse events will be clipped to the window’s visible region, with those
outside the region going unreported.

Windows cursors are pretty much the same as their Macintosh counterparts: they
have a color or monochrome bit image, a monochrome bit mask, and a hot spot.
The image defines the cursor’s appearance on the screen, the mask works like a
cookie-cutter to define its shape, and the hot spot defines the point within the
image that marks the actual mouse location. However, because Windows has to
work with a variety of display devices at different resolutions and aspect ratios, the
dimensions of the cursor aren’t standardized, as they are on the Macintosh at 16
pixels by 16. The cursor’s width and height aren’t even necessarily equal, since
some devices use square pixels and others use rectangular ones with different
horizontal and vertical resolutions. The cursor dimensions for the currently
configured display device are available via the GetSystemMetrics function, using
the selectors SM_CXCURSOR and SM_CYCURSOR.

Mouse and Keyboard 10

11 Mouse and Keyboard
Figure 5–1. Stock cursors

IDC_ARROW
IDC_UPARROW
IDC_CROSS
IDC_IBEAM
IDC_ICON

IDC_SIZE
IDC_SIZENS
IDC_SIZEWE
IDC_SIZENWSE
IDC_SIZENESW

IDC_NO
IDC_APPSTARTING
IDC_WAIT

You can create a cursor dynamically at run time with the Windows function
CreateCursor, but the usual practice is to read it in as a resource with LoadCursor.
Both functions return a cursor handle of type HCURSOR. Like all resource-loading
functions, LoadCursor takes two parameters: a handle to the program instance in
whose executable file the resource resides, and a second parameter identifying the
individual resource within the file. As we learned in Chapter 2, this second
parameter is nominally a string pointer to the resource name, but in reality it can
instead be an integer resource ID converted to string form with the
MAKEINTRESOURCE macro. A null instance handle refers to one of the standard or
“stock” cursors shown in Figure 5–1; the second parameter must then be one of the
constants in Table 5–4. (The prefix IDC_ stands for “identifier, cursor.”) These
constants are already typecast into string pointers, so it isn’t necessary to use
MAKEINTRESOURCE on them. For example, the statement

arrowCursor = LoadCursor (NULL, IDC_ARROW);
loads the standard arrow cursor. The stock cursors actually exist in a variety of
dimensions and color depths for use on different display devices; LoadCursor
automatically selects the one best suited to the current screen.

Each time the user moves the mouse within a window’s client area, Windows sends
the window the message WM_SETCURSOR, with the hit-test code returned by
WM_NCHITTEST as one of its parameters. By processing this message, you can test
the cursor’s location and set its shape accordingly with the Windows function
SetCursor. The standard window procedure does this automatically for the
window’s non-client area, depending on the hit-test code: for instance, if the hit-test
value is HTTOPLEFT, denoting the top-left corner area of the window’s sizing border,
Windows will set the cursor to IDC_SIZENWSE, the double-headed arrow pointing
northwest and southeast.

The easiest way to manage the cursor, though, is to specify a class cursor when you
register your window class. Windows will automatically set the cursor to this shape
whenever it moves into the client area of a window belonging to the class. If you
need to divide your window into distinct functional areas with different cursor
shapes, you can do it by creating a “transparent” child window (one with no visible
border) for each area, and giving each such child window a different class cursor.
When the child window receives the WM_SETCURSOR message, it will relay it back to
the parent window. If it wishes, the parent window itself can set the cursor and

Mouse and Keyboard 11

12 Mouse and Keyboard
return a result of TRUE to indicate that the cursor is already taken care of; or it can
return FALSE and let the child window do the job.

If you decide to do your cursor management by hand, be sure to set the class
cursor to NULL when you register your window class; otherwise, the cursor
will flicker on the screen as your program and Windows fight a tug-of-war
over its shape every time the user moves the mouse. Also, remember that
the cursor is a system-wide resource that you share with other programs.
Don’t change its shape unless it’s within the client area of one of your
windows or unless you’ve captured the mouse; and if you do capture the
mouse, remember to restore the cursor to its previous shape before releasing
it.

Table 5–4. Stock cursors
Name Description Purpose

IDC_ARROW Northwest arrow General-purpose
IDC_UPARROW Up arrow General-purpose
IDC_CROSS Crosshairs Precise location
IDC_IBEAM I-beam Text selection
IDC_ICON Empty icon Program selection

IDC_SIZE Four-way arrow Move or size window
IDC_SIZEALL Four-way arrow Move or size window
IDC_SIZENS North–south double arrow Size window, top or bottom edge
IDC_SIZEWE West–east double arrow Size window, left or right edge
IDC_SIZENWSE Northwest–southeast double

arrow
Size window, top-left or bottom-right
corner

IDC_SIZENESW Northeast–southwest double
arrow

Size window, top-right or bottom-left
corner

IDC_NO Circle with diagonal slash Prohibited operation
IDC_APPSTART
ING

Arrow with hourglass Waiting for program to load

IDC_WAIT Hourglass General delay

You can get a handle to the current cursor with the Windows function GetCursor
and retrieve or change its coordinates on the screen with GetCursorPos or
SetCursorPos. On a system without a mouse, SetCursorPos is handy for moving
the cursor around on the screen with the keyboard arrow keys. The ClipCursor
function confines the cursor within a specified rectangle, pinning it at the
rectangle’s edges and preventing it from traveling outside. (We’ve already seen an
example of this function in action in Listing 5–1.) You can find out the current
confinement rectangle, if any, with GetClipCursor; this is useful for saving and
restoring the previous confinement state.

The Windows function ShowCursor hides or shows the cursor, depending on the
Mouse and Keyboard 12

13 Mouse and Keyboard
value of a boolean parameter. Like its Macintosh counterpart, the Windows cursor
maintains an integer visibility level that records how many times it has been hidden
and not yet reshown. Hiding the cursor decrements the visibility level by one;

Mouse and Keyboard 13

14 Mouse and Keyboard
showing it increments the level. A negative visibility level makes the cursor invisible
on the screen. The visibility level is ordinarily initialized to 0, but on systems without
a mouse, it’s initialized to -1 instead, making the cursor invisible by default.

If you’ve created a cursor from scratch with CreateCursor, you must destroy it with
DestroyCursor before exiting from your program. It isn’t necessary to destroy a
cursor that you’ve loaded as a resource with LoadCursor.

The other primary input device on all Windows systems is the keyboard. The
keyboard is designed mainly for entering text, but it can also be used in place of the
mouse for manipulating menus, windows, and controls on the screen. Although it’s
possible, as WiniEdit demonstrates, to write a program that never interacts
explicitly with the keyboard, most real-world programs will need to receive and
process keyboard input in some form. Table 5–5 lists the main message types
related to keyboard input; we’ll be discussing them in the remainder of this section.

Table 5–5. Keyboard messages
Message type Meaning

WM_KEYDOWN Key pressed
WM_KEYUP Key released
WM_SYSKEYDOWN Key pressed with Alt key
WM_SYSKEYUP Key released with Alt key

WM_CHAR Character typed
WM_DEADCHAR Dead character typed
WM_SYSCHAR Character typed with Alt key
WM_SYSDEADCHAR Dead character typed with Alt key

WM_SETFOCUS Window acquiring input focus
WM_KILLFOCUS Window losing input focus

Input Focus
No more than one window at a time can be the target of the user’s keyboard input.
The window so designated is said to have the input focus. The window with the
focus is always either the active window or one of its children. In a dialog box, for
instance, the focus normally belongs to one of the dialog’s controls, identified by a
dotted focus rectangle around the text of a button control or an insertion caret or
selection highlight in an edit control. The standard window procedure responds to
the keystrokes Tab and Shift-Tab by cycling the focus forward and backward among
the dialog’s controls, and to the space bar by activating or toggling the button with
the focus as if it had been clicked with the mouse.

Mouse and Keyboard 14

15 Mouse and Keyboard
A window normally acquires the input focus when it becomes the active window. You
can also set the focus explicitly with the Windows function SetFocus, or find out
which window has it with GetFocus. Windows signals when the focus shifts from one
window to another by sending the message WM_KILLFOCUS to the window losing the
focus and WM_SETFOCUS to the one gaining it. WiniEdit’s document window, for
instance, responds to this message by relaying the focus to its child, the edit control
(see Listing 5–2). The edit control’s built-in window procedure will then receive and
handle all keyboard input for as long as the document window remains active.

A window in the minimized state (reduced to a button in the Windows 95 task bar)
can’t respond to keyboard input. In this case, no window is considered to have the
input focus: all keyboard input is then directed to the system itself, rather than to
any individual window.

Listing 5–2. Handle WM_SETFOCUS message

VOID DoSetFocus (HWND thisWindow, WPARAM wParam, LPARAM lParam)

// Handle WM_SETFOCUS message.

{
SetFocus (TheEditor); // Pass focus to the edit control

} /* end DoSetFocus */

Keystroke Messages
Every key on the keyboard is identified by a device-dependent scan code that
identifies the key to the keyboard driver. The keyboard driver converts this scan
code into a device-independent virtual-key code, using a keyboard layout
configured by the user with the Keyboard control panel. The virtual-key code
identifies the key by its purpose instead of its physical location on the keyboard,
such as VK_A for the letter A, VK_ENTER for the Enter key, or VK_SPACE for the space
bar. (See the Win32 Programmer’s Reference for a complete table of virtual-key
codes.)

When the user presses or releases a key, the keyboard driver posts a message,
normally a WM_KEYDOWN or WM_KEYUP, to the global system message queue. (If the
Alt key was being held down at the time, or if no window currently has the input
focus, the message is WM_SYSKEYDOWN or WM_SYSKEYUP instead.) The message
identifies the key by both its physical scan code and the corresponding virtual-key
code, along with some other information that we’ll talk about in a minute. The
Windows system then moves the message from the system message queue into the
private queue of the currently active thread. Eventually, the thread’s message loop
will retrieve and process the message.

All of these keystroke messages (WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN,
WM_SYSKEYUP) receive the virtual-key code as their wParam parameter; the lParam

Mouse and Keyboard 15

16 Mouse and Keyboard
parameter contains a variety of information packed into a 32-bit long word (see
Figure 5–2):

Figure 5–2. lparam parameter for keystroke messages

Repeat count

Scan code

Extended-key flag

Context code

Previous-state flag

State-transition flag

313029 2423 1615 0

• The 8-bit raw scan code generated by the keyboard hardware.
• A 16-bit repeat count. Before posting a keyboard message to the queue,

Windows looks first to see if there’s one already there for the same keystroke. If
so, it just increments the existing message’s repeat count instead of posting
another separate message. This typically happens when the user presses and
holds a key, generating auto-repeat keystrokes faster than the program can
retrieve them from the queue.

• A 1-bit previous-state flag showing whether the key was previously up or down. If
this flag is set, it shows that the current message is part of a continuing series
generated by an auto-repeating key.

• A 1-bit state-transition flag that tells whether the message was generated by the
user’s pressing a key (WM_KEYDOWN or WM_SYSKEYDOWN) or releasing one
(WM_KEYUP or WM_SYSKEYUP).

• A 1-bit extended-key flag indicating whether the keystroke was generated by
one of the additional keys on the extended keyboard. Table 5–6 lists the
extended keys that cause this flag to be set. In general, they are those in the
extra clusters to the right of the main keyboard layout, such as the arrow keys
and the keypad. For some reason, however, not all of the keypad keys are
considered extended keys: only the Enter, Divide (/), and Num Lock keys are
included. Most programs don’t pay much attention to the extended-key flag, but
it can sometimes be useful for distinguishing between otherwise functionally
equivalent keys, such as the left and right Ctrl or Alt keys or the keyboard and
keypad Enter keys.

Mouse and Keyboard 16

17 Mouse and Keyboard
• A 1-bit context code that tells whether the Alt key was down at the time of the

keystroke. In the case of a system keystroke (WM_SYSKEYDOWN or WM_SYSKEYUP),
this flag distinguishes whether the keystroke is directed to the system because
of the Alt key or because no window has the input focus.

Table 5–6. Extended keys
Virtual-key code Key

VK_MENU Right-hand Alt key
VK_CONTROL Right-hand Ctrl key

VK_INSERT Insert
VK_DELETE Delete
VK_HOME Home
VK_END End
VK_PRIOR Page Up
VK_NEXT Page Down

VK_LEFT Left arrow
VK_RIGHT Right arrow
VK_UP Up arrow
VK_DOWN Down arrow

VK_RETURN Keypad Enter key
VK_DIVIDE Keypad Divide (/)
VK_NUMLOCK Num Lock

VK_SNAPSHOT Print Screen (F13)
VK_SCROLL Scroll Lock (F14)
VK_PAUSE Pause/Break (F15)

In general, raw keystroke messages (as opposed to the character-oriented
messaages discussed in the next section) are most useful for handling non-
character input such as the arrow and function keys. If you do need to process raw
keystrokes, you should normally confine yourself to the non-system messages,
WM_KEYDOWN and WM_KEYUP. The default window procedure, DefWindowProc, ignores
these messages, but it uses the system versions, WM_SYSKEYDOWN and WM_SYSKEYUP,
to implement many of the standard keyboard conventions that Windows users
expect, such as the Alt-key interface for menu selection that we’ll be discussing in
Chapter 9. If the default window procedure doesn’t receive system keystrokes, your
user will lose access to these standard Windows features. So if you absolutely must
intercept system keystrokes yourself, be sure you pass them on to DefWindowProc
in addition to any processing you may be doing on your own. Your users will thank
you.

Mouse and Keyboard 17

18 Mouse and Keyboard

Character Messages
On the Macintosh, a single keyboard event (key-down, key-up, or auto-key) contains
codes identifying both the physical key that was pressed and the logical character it
represents. In Windows, the low-level keystroke messages that we’ve discussed so
far contain no reference to specific text characters. While it’s true that many virtual-
key codes refer to character keys, such as VK_M or VK_8 or VK_SPACE, that doesn’t
mean that every keystroke generated by such a key necessarily represents that
particular character. The VK_M key, for instance, may produce an uppercase M or a
lowercase m, depending on the state of the Shift and Caps Lock keys; VK_8 can
produce either a numeral 8 or an asterisk (*); or a keystroke may have been typed
with the Alt or Ctrl key down and not represent any character at all. The task of
mapping raw keystrokes into characters is performed by the Windows function
TranslateMessage.

We’ve already encountered TranslateMessage in Chapter 3 as part of our NullApp
program’s main message loop routine (reproduced for reference in Listing 5–3).
After retrieving a message with GetMessage, we pass it to TranslateMessage to see
if it’s a keystroke representing a text character. If so, TranslateMessage will
generate a corresponding character message (WM_CHAR or WM_SYSCHAR) and post it
to the message queue. The character message goes straight to the front of the
queue instead of the end, so it doesn’t get out of order with other possible keyboard
messages that may be pending in the queue. TranslateMessage simply ignores any
message that isn’t a keystroke.

Listing 5–3. NullApp main program loop

VOID MainLoop (VOID)

// Execute one pass of main program loop.

{
MSG theMessage; // Next message to process

ContinueFlag = GetMessage(&theMessage, NULL, 0, 0); // Get next message

TranslateMessage (&theMessage); // Convert virtual keys to characters
DispatchMessage (&theMessage); // Send message to window procedure

} /* end MainLoop */

All character messages identify the character typed via a character code in the
message’s wParam parameter. The lParam parameter holds the same information as
in a raw keystroke message, as shown earlier in Figure 5–2. The contents of lParam
are simply copied directly from the keystroke message (WM_KEYDOWN or
WM_SYSKEYDOWN) that gave rise to the character message. Most of this information is
normally of no interest, but don’t forget to check the repeat count in case several
strokes of the same key have been combined into a single message.

Mouse and Keyboard 18

19 Mouse and Keyboard

Polling the Keyboard
In determining what character a keystroke represents, TranslateMessage must take
into account the state of the Shift and Caps Lock keys. If you look carefully,
however, you’ll find that this information is not included anywhere in the keyboard
message’s parameters: there is no equivalent to the modifiers field of a Macintosh
event record. Instead, TranslateMessage has to poll the state of the modifier keys
directly, using the Windows function GetKeyState. This function accepts a virtual-
key code as a parameter and reports whether the key is up or down. For keys that
toggle a persistent state, such as Caps Lock, Num Lock, and Scroll Lock, it also
reports whether the state is currently toggled on or off. Note that this function
applies to just a single designated key; a related function, GetKeyboardState,
returns an array of state information for the entire keyboard.

You might think that polling the keyboard this way is an unreliable way of checking
the modifier keys for a keyboard event, since the state of the keys may have
changed between the time the event was posted and the time it’s processed. It
turns out, however, that the GetKeyState and GetKeyboardState functions keep
track of such changes and report the state of the keyboard at the time the current
keyboard message was posted, not its current state at the time it’s actually polled.
This makes these functions ideal for processing keystrokes one by one out of the
queue, but it also means you can’t rely on them for polling the current state of the
keyboard, right this instant. Luckily, there’s yet another Windows function,
GetAsyncKeyState, that reports the state of a key right now, without reference to
any previously posted message.

Dead Keys
In some keyboard layouts, some of the keys may generate accents or diacritical
marks for use in languages other than English, such as an acute accent (´), umlaut
(¨), or circumflex (ˆ). Such characters are intended to combine with the next
character typed to produce an accented character, such as é, ü, or ô. The accented
letter is represented by a character code of its own, different from those of both the
accent itself and the base letter to which it attaches. (That is, the character code for
é is different from those for ´ and e.) Since the accent key by itself doesn’t generate
a text character until after the next keystroke, it is known as a dead key; the accent
character it represents, which combines with the next character typed to form a
single character, is called a dead character.

When the Windows TranslateMessage function determines that a keystroke it has
received represents a dead character, it generates a message of type WM_DEADCHAR
(or WM_SYSDEADCHAR for a system keystroke) instead of the usual WM_CHAR message.
Then, when it receives the next keystroke, it combines that character with the dead
character and generates a WM_CHAR message carrying the character code for the
resulting combination character (é in the previous example). Thus the overall
sequence of messages generated goes like this:

Mouse and Keyboard 19

20 Mouse and Keyboard
WM_KEYDOWN WM_SYSKEYDOWN
WM_DEADCHAR (´) WM_SYSDEADCHAR (´)
WM_KEYUP or, for a system keystroke, WM_SYSKEYUP
WM_KEYDOWN WM_SYSKEYDOWN
WM_CHAR (é) WM_SYSCHAR (é)
WM_KEYUP WM_SYSKEYUP

If the next character typed after the dead character is not one that it can combine
with (such as a consonant instead of a vowel following an acute accent),
TranslateMessage treats them as separate characters and generates two WM_CHAR
messages. For example, typing an acute accent followed by a lowercase m would
result in the following sequence of messages:

WM_KEYDOWN WM_SYSKEYDOWN
WM_DEADCHAR (´) WM_SYSDEADCHAR (´)
WM_KEYUP WM_SYSKEYUP
WM_KEYDOWN or WM_SYSKEYDOWN
WM_CHAR (´) WM_SYSCHAR (´)
WM_CHAR (m) WM_SYSCHAR (m)
WM_KEYUP WM_SYSKEYUP

Unless you have some special reason for caring about them, it’s usually safe to
ignore dead-character messages: the dead character will always turn up eventually
in an ordinary character message, either in its own right or as part of a combination
character like é.

Mouse and Keyboard 20

21 Mouse and Keyboard

Mouse and Keyboard Operations
Table 5–7 summarizes some common Windows functions relating to mouse and
keyboard input. We’ve already discussed some of them in this chapter; you can
learn about the rest in the Win32 Programmer’s Reference.

Table 5–7. Common mouse and keyboard functions
Function Mac counterpart Purpose

SetCapture ————— Capture mouse
GetCapture ————— Get window that has captured the

mouse
ReleaseCapture ————— Release captured mouse

GetDoubleClickTi
me

GetDblTime Get double-click interval

SetDoubleClickTi
me

————— Set double-click interval

SwapMouseButton ————— Reverse left and right mouse buttons

CreateCursor ————— Create new cursor
LoadCursor GetCursor Load cursor from template resource
CopyCursor ————— Make copy of cursor
DestroyCursor ————— Destroy cursor

GetCursor ————— Get current cursor
SetCursor SetCursor Set current cursor
SetSystemCursor ————— Change appearance of stock cursor

GetCursorPos GetMouse Get current cursor coordinates
SetCursorPos ————— Set cursor coordinates

ShowCursor ShowCursor, HideCursor Make cursor visible or invisible

ClipCursor ————— Confine cursor within a rectangle
GetClipCursor ————— Get current confinement rectangle

GetKeyState ————— Get state of key at time of message
GetKeyboardState GetKeys Get state of full keyboard at time of

message
GetAsyncKeyState ————— Get current state of key

GetKeyNameText ————— Get name of key in string form

GetFocus ————— Get window with input focus

Mouse and Keyboard 21

22 Mouse and Keyboard
SetFocus ————— Set window with input focus

Mouse and Keyboard 22

23 Mouse and Keyboard
Mouse

• A Macintosh program receives
a mouse-down or mouse-up event
when the user presses or releases
the mouse button.

• A Windows program receives a
button-down or button-up message
when the user presses or releases a
mouse button.

Cursor

• The Macintosh cursor has an
image, a mask, and a hot spot.

• The Windows cursor has an
image, a mask, and a hot spot.

• A Macintosh cursor can be
created dynamically or read in as a
resource.

• A Windows cursor can be
created dynamically or read in as a
resource.

• The Macintosh Toolbox has
certain standard cursors built in as
system resources and available to all
programs.

• Windows has certain standard
(“stock”) cursors built in as system
resources and available to all
programs.

• The Macintosh cursor
maintains an integer visibility level to
count how many times the cursor
has been hidden and not yet
reshown.

• The Windows cursor maintains
an integer visibility level to count
how many times the cursor has been
hidden and not yet reshown.

Keyboard

• A Macintosh program receives
a key-down or key-up event when the
user presses or releases a key on the
keyboard.

• A Windows program receives a
key-down or key-up event when the
user presses or releases a key on the
keyboard.

...Only Different
Mouse

• The mouse (or other pointing
device) is an integral part of every
Macintosh system.

• The Windows mouse is an
optional accessory; not every system
has one.

• The Macintosh mouse always
has exactly one button.

• The Windows mouse can have
one, two, or three buttons.

• Macintosh mouse events are
directed globally to the program as a
whole.

• Windows mouse messages are
directed specifically to the window in
which they occur.

Mouse and Keyboard 23

24 Mouse and Keyboard
• Because mouse clicks are
global to the entire program, the
Macintosh has no concept of
capturing the mouse.

• In Windows, a window can
capture the mouse, receiving all
subsequent mouse messages (even
those occurring outside the given
window) until it releases the mouse.

• Macintosh programs receive
the same type of mouse-down event
for any mouse click, no matter where
it occurs on the screen.

• Windows programs receive
different types of button-down
messages, depending on whether
the mouse was clicked in a window’s
client or nonclient area.

• Macintosh programs must
respond explicitly to all mouse clicks,
including those in a window’s frame
(title bar, size box, close box, zoom
box) or in the menu bar.

• Windows programs need only
respond to mouse clicks in a
window’s client area; those in the
nonclient area (title bar, sizing
border, menu bar, close box,
minimize and maximize boxes) are
handled automatically by the default
window procedure.

• On the Macintosh, mere
movements of the mouse don’t
generate events in themselves.

• Windows programs receive a
mouse-moved message whenever
the user moves the mouse.

• Macintosh programs must poll
the mouse position in order to track
its movements.

• Windows programs can use
mouse-moved messages to track the
mouse’s movements.

• Macintosh programs must
decide for themselves when a double
click has occurred, by comparing the
times and locations of consecutive
mouse clicks.

• Windows programs receive a
double-click message to tell them
when a double click has occurred.

Mouse and Keyboard 24

25 Mouse and Keyboard

Cursor

• The Macintosh cursor is always
the same size, 16 pixels wide by 16
high.

• The Windows cursor can vary
in dimensions according to the
characteristics (resolution and aspect
ratio) of the screen on which it is
displayed.

• A Macintosh program must
manage the appearance of the
cursor in all parts of the screen.

• A Windows program must
manage the appearance of the
cursor only in a window’s client area;
the Windows system manages it
automatically in the nonclient area or
outside the window.

• Macintosh programs manage
the cursor either by polling its
location on every pass of the event
loop or by passing a valid region for
the current cursor as a parameter to
WaitNextEvent.

• Windows programs manage
the cursor by receiving a
WM_SETCURSOR message every time
the user moves the mouse, or by
specifying a default cursor for an
entire class of windows.

Mouse and Keyboard 25

26 Mouse and Keyboard

Keyboard

• The Macintosh Toolbox reports
both a physical key code and a
logical character code in a single
event.

• Windows sends two different
types of keyboard messages:
keystroke messages containing a
physical key code and character
messages containing a logical
character code.

• Macintosh keyboard events
are directed globally to the program
as a whole.

• Windows keyboard messages
are directed specifically to the
window that has the input focus.

• Every Macintosh keyboard
event represents a single keystroke,
whether key-down, key-up, or auto-
key.

• A Windows keyboard message
has a repeat count, allowing it to
represent several successive strokes
of the same key.

Mouse and Keyboard 26

